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Abstract- 

This paper is concerned an analytical method of magneto thermodynamics stress in a finite hollow cylinders 

under a sudden temperature change in magnetic field. The interaction between deformation and magnetic field in a hollow 

cylinder is considered by adding a Lorentz electro magneto force into the equation of thermo elastic motion of a hollow 

cylinder in an axial magnetic field. Utilizing finite integral transforms one can solve the equation of magneto thermo 

elastic motion and obtain the analytical expressions for the time response of magneto thermodynamics stress for a finite 

hollow cylinder 
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Introduction: 

In this paper, an attempt has been made to 

determine the magneto thermo stresses in a finite 

hollow cylinder under a sudden temperature change 

in a uniform magnetic field with boundary 

conditions, by using the Hankel transform and 

Laplace transform techniques.   
 

Nomenclature 

 trT ,  - Temperature charge (absolute temperature 

minus reference temperature). 

U
~

 - Displacement vector 

U  - Radial displacement 

0
,

r  - Radial stress and circumferential stress. 

bat ,,,  - Density, time and internal and external 

radii of a hollow cylinder coefficient of linear 

thermal expansion. 

G,  - Lame constants 

vE,  - Young’s modulus and Poisson’s ratio 

  - Magnetic permeability 

H
~

 - Magnetic intensity vector 2,,
H

oo   

e~  - Perturbation of electric field vector. 

h
~

 - Perturbation of magnetic field vector 

),,( hzoo  

1
C  - Elastic wave speed 

2
C  - Magnetic interference wave speed 
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C  - Magneto thermo elastic wave speed 
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Statement Of The Problem 

 Consider a long hollow cylinder with perfect 

conductivity placed initially in an axial magnetic 

field ),,(
~

z
HooH . Let this hollow cylinder be 

subjected to a rapid change in temperature ),( trT  

produced by the absorption of an electromagnetic 

pulse or γ-ray pulse radiant energy. Assuming that 

the magnetic permeability μ of the hollow cylinder 

equals the magnetic permeability of the medium 

around it, and omitting displacement electric current, 

the governing electro dynamic Maxwell equations 

for a perfectly conducting, elastic body are given by 
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Applying an initial magnetic field vector 

),,(
~

z
HooH  in cylindrical polar co-ordinate 

),,( zr   to Eq. (1) we have 
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From Eqs. (1), (2) and (3) the magneto elastic 

dynamic equation of the hollow cylinder become 
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Where r
f  is defined as 
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The radial stress and the circumferential stress of a 

hollow cylinder subjected to a thermal shock load 

),( trT are 
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Substituting eqs (5), (6) and (7) into eq. (4), the basic 

displacement equation of magneto the inelastic 

motion may be expressed as 
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Omitting the Maxwell tensor on the surface of the 

hollow cylinder, the corresponding boundary 

conditions are 
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The initial conditions are 

0
)0,(

,0)0,( 
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Solution Of The Problem 

Assume that the general solution to the Eqs. (8, 9, 10, 

11) may be expressed in the form 

),(),(),( trudtrutru
t

  (12) 

Where ),( tru
s  and ),( tru

d  are respectively, the 

static and dynamic solutions to Eq. (8), (9), (10) and 

(11). The static solution ),( tru
s must satisfy Eq. 

(13) and the corresponding inhomogeneous boundary 

conditions (9) and (10) are  
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Solving Eq. (13) we have 
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From Eqs (14) and (15) the unknown constants 1
B  

and 2
B  in Eq. (16) may be determined as  
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The dynamic solution, ),( tvud , can be found from 

Eqs (8) to (15). 

This solution should satisfy the following 

inhomogeneous equation (19), the corresponding 

homogeneous boundary conditions (20) and (21), 

and the initial condition (21). 
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Where ),( tvu
s  is the known static solution shown 

in Eq. (16) the solution of the homogeneous formula 

of Eq. (19), assuming 0),( tvu
s  is given by 
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)exp()(),(
0

iwtvgtvud   (23) 

Where )(vg  and w are the characteristic function 

and natural frequency respectively. 

Substituting Eq. (23) into the homogeneous formula 

of Eq. (19) and utilizing Eqs (20) and (21) we have 
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The generalized solution of Eq. (2.2.24) is given by 
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Following Eigen equation 
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Where )(KnvJn  and )(KnvYn  are nth-order 

Bessel functions of the first and second kinds, 

respectively. In the preceding formula, 

),...,2,1( mnkn   express a series of positive roots 

of the equation (28) and 

L
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The corresponding characteristic function (27) 

reduces to  
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By means of the normalization properly of eigen 

functions, the constant an Eq. (36) is determined as 






b

a nv

b

a nv

dvkvQ

dvkQvvgn
An

)(

)()(

2

1

1
 (38) 

Define a finite Hankel transform of )(vg  as 
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Then the inverse of Eq. (39) is given by 
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By using Eq. (39) and performing a finite Hankel 

transform on Eq. (19) we have 
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Where 

)],([),( tvuHankeltku
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The first and second terms on the left-hand side of 

Eq. (42) should be the homogeneous boundary 

conditions (20) and (21). Thus Eq. (42) simplifies to  
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Applying Laplace transforms to Eq. (43) gives 
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Where p is the Laplace transform parameter. Taking 

inverse Laplace transforms of Eq. (44), we have 

 
t

LnsLnnsnd
dtckucktkutku

0
)](sin[),(),( 

 

 )sin()cos( 0

0
tck

ck

v
tcku

Ln

Ln

Ln
  (45) 



Aayushi International Interdisciplinary Research Journal (AIIRJ) 

VOL- VI ISSUE-IX SEPTEMBER 2019 
PEER REVIEW 

e-JOURNAL 
IMPACT FACTOR  

5.707 
ISSN  

2349-638x 

 

yyEmail id’s:- aiirjpramod@gmail.com,aayushijournal@gmail.com I Mob.08999250451 
website :- www.aiirjournal.com 

Page No. 
 57 

 

Using equation (40) and (41) and applying a finite 

inverse Hankel transform to Eq. (45), the solution 

),( tvu
d   of Eq. (19) to (21) is expressed as 
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By substituting Eqs. (10) and (46) into Eqs. (12) the 

general solution of the basic equation (8) to (11) 

becomes 
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Equations (46) and (47) are the magneto 

thermodynamic stresses. 

Conclusion  

 In this paper, we have investigated the 

magneto thermodynamic stresses in a finite hollow 

cylinder with the help of the finite Hankel transform 

and Laplace transform techniques. The expressions 

that are obtained can be applied to the design of 

useful structures or machines in engineering 

application.  
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